2024/25 Undergraduate Module Catalogue

MATH2230 Discrete Mathematics

10 Credits Class Size: 215

Module manager: Dr. Richard Elwes
Email: R.H.Elwes@leeds.ac.uk

Taught: Semester 2 (Jan to Jun) View Timetable

Year running 2024/25

Pre-requisite qualifications

MATH1010 or MATH1005 or MATH1060 or MATH1331, or equivalent.

Mutually Exclusive

MATH2210 Introduction to Discrete Mathematics
MATH2231 Discrete Mathematics with Computation

This module is not approved as a discovery module

Module summary

Discrete mathematics is the area of mathematics concerned with the study of discrete (i.e. distinct, separate, unconnected) objects. The typical problems studied in discrete mathematics involve counting the elements of a finite set (e.g. how many ways are there of choosing a 4-digit PIN number?), studying graphs (e.g. can we check that two computers in a network are connected). Correspondingly, the module will introduce key ideas from Combinatorics and Graph Theory.

Objectives

Discrete mathematics is a wide and very active subject, spanning across pure and applied mathematics. It is generally concerned with objects that are finite (the ways in which we can arrange two teams of 5 players from a group of 10 people) and on finding explicit methods and algorithms to establish their properties. The module will look at two particularly important topics of discrete mathematics: combinatorics and graph theory. The first is generally concerned with counting problems, including aspects of the theory of difference equations. The second is concerned with graphs, which provides effective ways of representing finite (and sometimes even infinite) data. The module offers also good background for MATH3143 (Combinatorics) and MATH3033 (Graph Theory).

Learning outcomes

On completion of this module, students should be able to:
1) Solve counting problems involving binomials, permutations, and the inclusion-exclusion principle;
2) Formulate counting problems as linear difference equations and know some applications;
3) Solve linear difference equations and some linearizable ones;
4) Test a graph to determine whether it is connected;
5) In simple cases, determine whether or not a graph is planar;
6) Use algorithms to find shortest paths and spanning trees in a graph;
7) Prove and apply Euler's formula for planar graphs.

Syllabus

1. Combinatorics: counting problems and their relevance for calculating probability; number of functions between finite sets; the binomial theorem and applications to the number of surjections and derangements; combinatiorial problems solvable by difference equations; linear difference equations; some linearizable difference equations; applications.
2. Graph Theory: graphs; adjacency matrices; handshaking lemma; subgraphs; isomorphism of graphs; connected graphs; algorithms to find a shortest path; trees; Cayley's formula; spanning trees; the matrix-tree theorem; planar graphs; Euler's formula; planarity tests.

Teaching Methods

Delivery type Number Length hours Student hours
Workshop 10 1 10
Lecture 11 1 22
Private study hours 68
Total Contact hours 32
Total hours (100hr per 10 credits) 100

Private study

Studying and revising of course material.
Completing of assignments and assessments.

Opportunities for Formative Feedback

Regular problem solving assignments

Methods of Assessment

Coursework
Assessment type Notes % of formal assessment
In-course Assessment . 15
Total percentage (Assessment Coursework) 15

There is no resit available for the coursework component of this module. If the module is failed, the coursework mark will be carried forward and added to the resit exam mark with the same weighting as listed above.

Exams
Exam type Exam duration % of formal assessment
Open Book exam 2.0 Hrs 0 Mins 85
Total percentage (Assessment Exams) 85

Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated

Reading List

The reading list is available from the Library website

Last updated: 8/19/2024

Errors, omissions, failed links etc should be notified to the Catalogue Team